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Abstract. Results for the electric field gradient (EFG) in eight HCP metals are obtained using 
the linear muffin-tin orbital (LMTO) atomic sphere approximation (ASA) method and a 
recently proposed LMTO ASA recursion scheme. In all cases the k-space LMTOASA results for 
the EFG agree well with those obtained using the real-space procedure and a first-order 
LMTO ASA tight-binding Hamiltonian with interactions limited to first neighbours. This is 
remarkable considering that the EFG is determined by differences between partial occupation 
numbers, which are of order of a hundredth of an electron and shows that the first-order 
Hamiltonian isveryreliable. Acomparisonwith more precise full-potentiallinear augmented 
plane-wave calculations and experimental values shows reasonably good agreement. This 
opens the way for predictions of the EFG in more complicated and disordered systems. 

1. Introduction 

The preceding paper (Petrilli and Frota-PessBa 1990) has presented a method for 
calculation of the electric field gradient (EFG), based on the recursion method (Haydock 
1980) and the linear muffin-tin orbital (LMTO) tight-binding (TB) formalism (Andersen 
and Jepsen 1984), which does not require symmetry and can be applied to amorphous 
materials. It was shown that the recursion method has enough precision to give mean- 
ingful results for the EFG. Reasonable results were obtained for the EFG of HCP Zr using 
a first-order approximation to the LMTO TB Hamiltonian and direct inversion for the 
structure constant S. In this paper we investigate in a systematic manner whether this 
approach gives a useful description of the EFG. The usefulness of the LMTO TB recursion 
scheme hinges on two questions. 

(i) How well can the LMTO method, in the atomic sphere approximation (ASA) 

(ii) What is the effect of the additional simplifications which make it possible to use 
(Andersen 1975) for the potential, reproduce the EFG? 

the recursion method? 

$ Present address: Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-1000 Berlin 33, Federal Republic of 
Germany. 
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As test cases, we have used the third- and fourth-row HCP metals with the exception 
of CO (which is magnetic). In this way we can compare the results with the thorough full- 
potential (FP) linear augmented plane-wave (LAPW) calculations of Blaha et a1 (1988) for 
the same materials. 

The aim of the present work is to develop a scheme which lies between full-blown 
expensive calculations and simple unrealistic models based on Sternheimer factors 
(Kaufmann and Vianden 1979), but whichis appicable to amorphous as well ascrystalline 
systems. In the absence of a better scheme, thepoint-charge model, which is appropriate 
for non-metallic systems, is often used to interpret experimental results. However, it is 
evident from the results of Blaha et a1 (1988) that this approach is unsuitable for metals, 
where the lattice contribution is small. These LAPW results will be used here as a control 
to verify that the present real-space formalism is capable of giving the correct signs and 
order of magnitudes for the EFG in metals. It will also give a clear idea of the limitations 
of the method. Of course we do not expect to reproduce the accuracy of the FP LAPW 
calculations using a real-space formalism and a simple LMTO ASA TB Hamiltonian but, if 
the correct trends are well reproduced and the limitations well understood, the real- 
space formalism can be used to study the behaviour of the EFG in complex systems, for 
which very little is known and more exact methods are extremely costly or not applicable. 

For later reference, we summarise the results of the FP LAPW calculations for the HCP 
metals. The EFG is determined almost completely by the charge distribution near the 
nucleus (i.e. lattice contributions of the type used in point-charge models are negligible). 
The EFG separates into p p ,  d-d and s-d contributions according to the angular momen- 
tum character of the wavefunction close to nucleus. The s-d term is always very small. 
The p p  term dominates and is about three to five times larger than the d-d term even 
for transition metals. This can be traced to the larger amplitude of the p partial wave 
near the nucleus. However, there is a relevant cancellation of p p  and d-d terms in some 
cases. Finally, it was found that core and semi-core states make only small contributions. 

Since the EFG is mainly determined by the shape of the charge density near the 
nucleus, it makes sense to explore the possibility of deriving the EFG from LMTO ASA 
calculations. For these, the output charge density near the nucleus (including non- 
spherical terms) is quite accurate even if a spherically symmetric input potential is used 
(Andersen et a1 1986). In § 2 we present a detailed analysis of the problem for HCP Zr. 
Section 3 presents results for other HCP metals. Conclusions arc presented in 5 4. 

2. Calculational details and results for Zr 

To calculate the EFG for a given crystalline structure, two approaches are possible. In 
the first approach, a self-consistent band-structure calculation is done to obtain the 
electronic charge density. By solving the Poisson equation for the total (electronic plus 
nuclear plus core) density, the electrostatic potential is obtained. The leading terms of 
the 1 = 2 components of this potential near the nucleus determine the EFG. In general, 
a 3 X 3 matrix must be diagonalised to obtain the zz component V,, of the field gradient 
tensor. For systems with axial symmetry (such as HCP) it is enough to consider the leading 
term of the (2.0) component of the electrostatic potential: 

V20(4 8j-C 1 
V,, = A lim - = A -1 Y2,(P)p(r) ;3 d r  

r-0 r2 5 

where the integral runs over all space excluding the nucleus in question, p(r) is the total 
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charge density, V,, is the radial part of the (1 ,  m)  = (2.0) component of the electrostatic 
potential felt by the nucleus, andA is aconstant. (We use atomic units so that the Poisson 
equation is V2V = -8np.) This procedure was followed by Blaha et al(1988) using the 
FPLAPW method to generate the charge density. To do the same in the LMTOASA method, 
we exploit the fact that, to a good approximation, the integral can be replaced by an 
integral over a reasonably large sphere around the nucleus. This is another statement of 
the fact that lattice contributions do not matter for the HCP metals. The wavefunction v 
is expressed as a one-centre expansion around the nucleus and p = /vi2 is evaluated. 
The decomposition of the EFG into p p ,  d-d and s-d terms results from selection rules 
for the Clebsch-Gordan coefficients which enter in this step. The EFG contributions 
depend only weakly on the sphere radius, so that our results (obtained for Wigner-Seitz 
spheres) can be compared directly with those of Blaha et a1 (for muffin-tin spheres). The 
only modification to a standard LMTOASA needed for this procedure is to accumulate the 
full non-spherical output charge density. Finally, one can try to improve the LMTO ASA 
results by including combined corrections (ccs). Without ccs the integrals entering the 
Hamiltonian and overlap matrices are approximated by integrals over atomic spheres. 
If ccs are included, the integrals are evaluated for the correct Wigner-Seitz cell, albeit 
for a potential defined differently in the overlap and interstitial regions. The effect of 
ccs is to shift the energies of the bands slightly, which leads to changes in the asymmetry 
of the occupation numbers. These changes may be important in EFG calculations. 

The second way to obtain the EFG, presented in the companion paper (Petrilli and 
Frota-PessGa 1990), is suitable for the TB schemes. The procedure can be applied to any 
lattice but, if the system has axial symmetry, the p p  and d-d contributions can be 
obtained from a simple weighted sum of the partial occupancies of the p or d states, 
multiplied by a structure-independent radial integral of the corresponding basis function. 
As was shown in the companion paper, the contributions are of the form 

v g  = CQZP,(" + iN, - N,) (2) 

As in the previous paper, N, and similar terms are occupation numbers and the quantities 
in the parentheses will be denoted as the charge asymmetries A N p  and ANd. To obtain 
V,, in 1013 esu ~ m - ~ ,  with the f,, given in table 4 later, the constant C should be taken as 
1296. The occupancies are obtained by filling the calculated partial densities of states 
(DOSS) up to the Fermi level and the integrals of the radial functions are calculated for 
the first-order LMTO ASA TB basis. 

To see whether the LMTO method can predict field gradients and to monitor the effect 
of the approximations leading to the LMTOTB recursion scheme, we have performed four 
calculations for the EFG of Zr  with different degrees of accuracy. In order of increasing 
degree of approximation, the procedures are as follows: procedure (a), LMTOASA in k- 
space using an spd basis with ccs included; procedure (b), the same without ccs; 
procedure (c), first-order LMTO TB Hamiltonian in k-space with LMTO TB structure con- 
stant S obtained by direct matrix inversion (see companion paper); procedure (d), the 
same Hamiltonian in connection with the recursion method. For procedures (a) and (b), 
the EFG was obtained from the full output charge density as described above. Hereby 
the one-centre expansion of the wavefunction was truncated at 1 = 2. With ccs included, 
the standard practice of renormalising the wavefunction was not followed when deter- 
mining the charge density, since this treats the density near the nucleus more correctly. 
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Table 1. Comparision of calculated EFGS for Zr for different approximations to the Hamil- 
tonian. FPLAPW refers to the results of Blaha eta1 (1988). The total EFG includes the s-d terms 
and (for the LAPW calculation) the lattice and semi-core contributions. The experimental 
value is 123 x 1013 esu 

EFG ( ioi3 esu cm-’) 

LMTO TB , LMTO TB, 
LMTO + CCS LMTO ASA k-space, recursion, 

FPLAPW (a) (b) (c) ( 4  

Total 143 160 90 69 78  
F-P 123 124 60 49 62 
d-d 32 36 31 20 16 

For procedures (c) and (d), the EFG was evaluated using the partial charges and radial 
integrals. Procedure (d) is the method which can be applied to amorphous systems. For 
Zr as well as the other HCP metals, a standard self-consistent LMTO ASA potential was 
used as input. The present calculations are non-relativistic, since we have found that 
relativistic effects have a small influence on the EFG for the metals considered in this 
paper. The same potential was used for all four procedures (a)-(d). For the k-space 
results, 484 k-points in the irreducible part were used for Brillouin zone integrations. In 
all our calculations, semi-core and lattice contributions were neglected. For procedures 
(c) and (d) the same first-order LMTO TB nearest-neighbour Hamiltonian was used. As 
was described in the preceding paper, this two-centre LMTO TB Hamiltonian can be 
written in terms of the TB structure constant S and potential parameters C and A. In the 
present calculations we have generated C and A from the standard potential parameters 
C, Q and A associated with the self-consistent ASA potential of procedures (a) and 
(b). We note that these parameters are slightly different from those tabulated in the 
literature, which were used in the companion paper. The structure constant matrix S 
was obtained by direct inversion using clusters of 19 atoms. The real-space calculation 
of procedure (d) was performed on a cylindrical cluster of 1249 atoms and a cut-off 
parameter LL = 20 was used for the recursion chain. As in the preceding paper, the 
terminator used by Beer and Pettifor (1984) was employed to obtain the density of 
states. 

Using the FP LAPW results as benchmarks, the following sources of error are possible 
as one goes from procedure (a) to (d). Firstly, all our calcuations use an ASA potential 
as opposed to the FP used by Blaha et al. This explains the error in procedure (a). 
Secondly, by comparing procedures (a) and (b) we see the effect of ignoring the ccs, 
thereby going over to a less sophisticated description of the crystal potential. Thirdly, 
procedure (c) has transformed the Hamiltonian to the LMTO TB representation (which is 
an exact transformation) but has then taken only the first-order terms and has truncated 
to nearest-neighbour interactions. Finally, procedure (d) has used the same Hamiltonian 
in the recursion method. This causes errors due to finite cluster size, surface effects and 
choice of terminator. 

From table 1, it can be seen that the error caused by the ASA potential is very small. 
This is unexpected, since the EFG depends very sensitively on the charge distribution. 
On the other hand, the ccs are important for obtaining good agreement; without them, 
the results are halved. As will be seen in § 3, this situation is typical for HCP metals near 
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Table 2. Calculated partial charges and charge asymmetries for Z r  for procedures (a)-(d). 
For procedure (a), there is a small interstitial charge which is not tabulated. 

LMTO + CCS. 

(a) 
LMTO ASA. 

(b) 

LMTO TB, 
k-space, 
(c) 

0.675 
0.225 
0.191 
0.593 
0.472 
0.575 

0.034 
0.138 

0.681 
0.232 
0.215 
0.559 
0.475 
0.572 

0.016 
0.071 

0.739 
0.221 
0.208 
0.548 
0.481 
0.553 

0.013 
0.061 

LMTO TB, 
recursion, 
( 4  

0.730 
0.223 
0.206 
0.546 
0.482 
0.562 

0.017 
0.049 

the beginning of the transition series. The effect of the various approximations is most 
clearly seen from the partial charges in the ASA spheres shown in table 2. One sees that 
the charge asymmetries ANp and AN,, which determine the EFG are very small quantities. 
Thus the sensitivity to details such as the ccs is understandable. We have also calculated 
the charges for the muffin-tin radius used by Blaha (1988) for procedure (a) and have 
found good agreement with his values. This fact, together with table 2, clearly shows 
that the most drastic step is to ignore the ccs, which changes the partial charges by up 
to 0.03 electrons. 

The most interesting result from tables 1 and 2 is that going over to the nearest- 
neighbour first-order Hamiltonian (procedure (c)) and use of the recursion method 
(procedure (d)) lead to errors which are small. Thus, it is adequate to work with a simple 
short-range Hamiltonian and a unit-matrix overlap. The success of the recursion method 
in this context arises because the partial charges are integrated quantities, which are 
known to be easily calculated. Errors in the partial charges for the p and d channels 
introduced by the recursion method are of the order of millielectrons. This gives a 
measure for the numerical noise which can be expected in the present scheme. 

The conclusions presented above are confirmed by the DOSS for the four cases shown 
in figure 1. There is quite a large difference between the DOSS for procedures (a) and 
(b), showing that the ccs are of importance. The DOSS for procedures (b), (c) and (d) 
are very similar. The most noticeable effect is that the peak to the right of the Fermi 
energy is slightly higher and narrower for procedures (c) and (d). These cases use the 
first-order Hamiltonian, which is known to compress the DOS at energies which lie high 
above the range of interest (Andersen et a1 1985). 

We note that equation (2) expressing the EFG using the charge asymmetries and 
radial integrals can also be used for procedures (a) and (b), giving, for example, 
12.5 x 1013 esu cm-3 and 46 x 1013 esu cm-3 for the p p  and d-d contributions for pro- 
cedure (a). The fact that this works is clear because the partial charges from the 
standard and first-order LMTO TB method agree to first order in energy. Thus, to a 
good approximation there is in fact a proportionality between A N p ,  ANd and the EFG 
contributions even without explicit use of the TB representation. 

Finally we compare the results obtained here for Zr  with those in the preceding 
paper, where the Varenna parameters (Andersen et a1 1985) were used to build the 
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Figure 1. Total DOS for Zr calculated using (a )  
procedure (a), ( b )  procedure (b), (c) procedure 
(c) and (d )  procedure (d). Energy iRyd)  

Hamiltonian, The Varenna parameters were generated by scalar relativistic LMTO ASA 

calculations using a basis which included f electrons. These have been tabulated by 
Andersen et a1 (1985) for all transition metals. The non-relativistic calculations of 
procedure (b) do not include f electrons. The different approaches used to obtain the 
potential parameters account for the differences between the results for the EFG of Zr 
in the two papers. A comparison between the two results shows that the EFG is not very 
sensitive to the choice of potential parameters. 

On the other hand, at least for HCP metals, the results for the EFG are very sensitive 
to the choice of the structure constant S .  If the approximate interpolation formula is 
used (Andersen and Jepsen 1984), an EFG for Zr which is much smaller and has the 
wrong sign is found. We note that the use of the interpolation formula leads to a 
Hamiltonian which is quite accurate and is adequate if we wish, for example, to obtain 
the main features of the DOS in an amorphous alloy. It is only because of the sensitive 
dependence of the EFG on the partial charges that a more exact treatment is needed here. 

3. Results for third- and fourth-row HCP metals 

In order to determine whether the conclusions of the last section are valid more generally, 
we have done similar calculations for all third- and fourth-row HCP metals except Co. 
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Table 3, Experimental and theoretical EFGS for eight third- and fourth-row HCP metals. For 
each element the top entry indicates the total EFG, followed by the corresponding p-p and 
d-d contributions. In the first column the atomic number and the experimental c/a ratio 
which was used in the calculations, are also shown. 

EFG (ioi3 esu cm-’) 

Experimental FP LAPW ASA + CCS ASA Recursion 

s c  
21 
1.59 

Y 
39 
1.57 

Ti 
22 
1.59 

Z r  
40 
1.59 

Tc  
43 
1.60 

Ru 
44 
1.59 

Zn 
30 
1.86 

Cd 
48 
1.89 

t 1 3  

- 

2 54 

t 123 

f 23 

-32 

+ 120 

+230 

32 
40 
-5 

93 
106 

-11 

69 
48 
33 

143 
123 
32 

- 49 
- 70 

14 

-41 
- 75 

22 

125 
177 

-32 

284 
322 
- 39 

31 
35 

-4 

95 
100 
-4 

85 
50 
36 

160 
124 
36 

- 25 
- 39 

14 

-1 
- 45 

45 

95 
100 
-7 

193 
178 
13 

17 
25 
-8 

45 
58 

-13 

46 
19 
27 

90 
60 
31 

- 69 
- 82 

14 

- 29 
-102 

74 

161 
197 

-38 

346 
370 
-25 

25 
33 
-8 

40 
54 

- 14 

34 
23 
12 

78 
62 
16 

- 70 
- 76 

6 

- 63 
-115 

52 

180 
200 
- 20 

272 
342 
- 70 

Table 3 presents experimental and theoretical EFGS for the HCP metals that we have 
considered. The materials were sorted by d-band occupancy. The last three columns 
correspond to procedures (a), (b) and (d) in 0 2. Details of the procedure were the same 
as for Zr.  We see that the agreement of the ASA + ccs calculation to the FP LAPW result 
is very good for Sc, Y ,  Ti and Zr,  but only reasonable for the other four metals. (We 
point out that, even for the worst case, Ru, the p p  and d-d contributions are correct to 
within a factor of 2.) Evidently the error caused by the spherical potential approximation 
correlates with the number of valence electrons. A possible explanation is that the 
magnitude of the non-spherical terms in the FP calculation is proportional to the number 
of valence electrons available. These can be either p or d electrons, since both couple to 
the non-spherical d terms in the potential. Therefore the ASA is a less drastic potential 
approximation at the beginning of the transition series. This correlation between the 
number of valence electrons and the importance of the FP should be transferable to other 
structures such as amorphous systems. 
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Next, the effect of the ccs is considered. The inclusion of the ccs shifts the energies 
of the bands slightly and leads to changes in the asymmetry of the occupation numbers 
as was seen for Zr. The sensitivity to the ccs is influenced to a large extent by how well 
the Wigner-Seitz sphere approximates the Wigner-Seitz cell. For the HCP metals, this 
is directly coupled to the c /a  ratio. Table 3 shows that there is indeed a clear correlation 
between c/a and the effect of the removal the ccs; for c/a near 1.6, the EFG becomes 
more negative while, for c/a near 1.9, the EFG increases. In both cases the results change 
by a factor which lies somewhere between 0.5 and 2. 

From the preceding, it seems as if the ccs were necessary to obtain accurate results 
for the HCP metals near the beginning of the transition series, while a FP calculation is 
needed for the other four metals. However, table 3 shows that, in terms of overall 
agreement, the ASA without ccs does quite well. While the EFG for Sc, Y, Ti and Zr are 
too small by a factor of 2, the results for Tc, Ru, Zn and Cd are somewhat better than 
for ASA + ccs. This is especially clear if the p p  and d-d contributions are considered 
separately. We note that the LMTO ASA with and without ccs are approximations for the 
potential which have different shapes. It is conceivable that, through a cancellation of 
terms, the straightforward ASA is better suited to some cases. This is convenient in the 
present context since it is much easier to implement the LMTOTB method using recursion 
if the ccs are not included. 

Now we consider the last two approximations leading to the LMTO TB recursion 
method: substitution by the first-order nearest-neighbour Hamiltonian and use of the 
recursion method to obtain the partial charges. From the last two columns in table 3, it 
is seen that these steps introduce small errors compared with the potential approxi- 
mation. We note that the EFGS obtained from the recursion calculations agree quite well 
with the LAPW results and with the experimental values. The signs for the total and the 
partial p p  and d-d EFGS are correct and the magnitudes are incorrect by a factor of no 
more than 2 in all cases. The trends are well represented and, considering the subtle 
nature of the EFG, these results are encouraging. 

Finally, we have also performed calculations based on the Varenna parameters for 
all the HCP metals considered here with the exception of Cd and Zn (which were not 
tabulated by Andersen et a1 (1985)). In all cases, the agreement with the recursion 
calculations in table 3 is good, both results having the same sign and differing by no more 
than 20%. Thus, again it seems that the results do not depend sensitively on the input 
potential parameters. This indicates that reasonable results for other more complicated 
structures might be obtained from transferable frozen potential parameters without 
iteration to self-consistency. The only other atomic properties then needed are the radial 
integrals Zl, of equation (2). For completeness, we list these in table 4. .  

4. Summary and conclusions 

The aim of this paper is to find a prescription for constructing the Hamiltonian to use in 
the recently proposed LMTOTB recursion scheme for the calculation of the EFG in metals. 
As typical test cases, eight third- and fourth-row HCP metals were considered. Results 
from k-space calculations for three different LMTO Hamiltonians and of the recursion 
method were compared with those of the thorough FP LAPW calculation of Blaha et al. 
In this way, the effects of various approximations to the Hamiltonian could be studied. 
It turned out that the LMTO ASA calculation with ccs included did very well for transition 
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Table 4. Radial integrals of equation ( 2 )  for eight HCP transition metals. 

I,, Idd  
(au-.’) ( a ~ ~ )  

s c  
Y 
Ti 
Zr 
Tc  
Ru 
Zn 
Cd 

4.79 
9.35 
6.99 

14.20 
20.95 
20.76 
5.38 
8.48 

0.85 
1.13 
1.39 
1.81 
4.19 
5.17 
9.57 

10.39 

metals with only a few d electrons but gave only reasonable results for larger d occu- 
pations. The LMTO ASA without ccs (which is better suited to use with the recursion 
method) gave quite good overall agreement with the expensive FPLAPW results; all signs 
were predicted correctly, and magnitudes were correct to within a factor of 2. It was 
found that, by going over to the nearest-neighbour LMTO TB Hamiltonian, only small 
errors are introduced if the TB structure constants are calculated by direct inversion. 
However, if the approximate interpolation formula is used instead, the Hamiltonian is 
not exact enough in the context of the EFG. Finally, it was found that the results were 
not very sensitive to the potential parameters. This is rather important if we want to 
apply the method developed here to more complex systems. Given the position of the 
atoms, the structure constants can be calculated with arbitrary precision for any given 
system. On the other hand, to obtain exact self-consistent parameters, we would need 
a convergent calculation, which is exactly what we are trying to avoid. The insensitivity 
of the results to the potential parameters allows us to use unrelaxed parameters (such 
as those tabulated in the literature) when applying the real-space method to complex 
systems. In conclusion, the LMTO TB recursion scheme gives encourgaing results for the 
eight HCP metals that we have considered, indicating that the method should be useful 
for investigations on more complicated systems. 
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